Serre Duality and Applications

نویسنده

  • JUN HOU FUNG
چکیده

We carefully develop the theory of Serre duality and dualizing sheaves. We differ from the approach in [12] in that the use of spectral sequences and the Yoneda pairing are emphasized to put the proofs in a more systematic framework. As applications of the theory, we discuss the RiemannRoch theorem for curves and Bott’s theorem in representation theory (following [8]) using the algebraic-geometric machinery presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noetherian Hereditary Abelian Categories Satisfying Serre Duality

Notations and conventions 296 Introduction 296 I. Serre duality and almost split sequences 300 I.1. Preliminaries on Serre duality 300 I.2. Connection between Serre duality and Auslander–Reiten triangles 304 I.3. Serre functors on hereditary abelian categories 307 II. Hereditary noetherian abelian categories with non-zero projective objects 309 II.1. Hereditary abelian categories constructed fr...

متن کامل

3 0 N ov 1 99 9 Noetherian hereditary categories satisfying Serre duality

In this paper we classify noetherian hereditary abelian categories satisfying Serre duality in the sense of Bondal and Kapranov. As a consequence we obtain a classification of saturated noetherian hereditary categories. As a side result we show that when our hereditary categories have no nonzero projectives or injectives, then the Serre duality property is equivalent to the existence of almost ...

متن کامل

2 00 1 Noetherian hereditary abelian categories satisfying Serre duality

In this paper we classify Ext-finite noetherian hereditary abelian categories over an algebraically closed field k satisfying Serre duality in the sense of Bondal and Kapranov. As a consequence we obtain a classification of saturated noetherian hereditary abelian categories. As a side result we show that when our hereditary abelian categories have no nonzero projectives or injectives, then the ...

متن کامل

The Riemann-roch Theorem and Serre Duality

We introduce sheaves and sheaf cohomology and use them to prove the Riemann-Roch theorem and Serre duality. The main proofs follow the treatment in Forster [3].

متن کامل

Generalized Serre duality

We introduce the generalized Serre functor S on a skeletally-small Hom-finite Krull-Schmidt triangulated category C. We prove that its domain Cr and range Cl are thick triangulated subcategories. Moreover, the subcategory Cr (resp. Cl) is the smallest additive subcategory containing all the objects in C which appears as the third term (resp. the first term) of some Aulsander-Reiten triangle in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013